Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes.

نویسندگان

  • Matxalen Llosa
  • Sandra Zunzunegui
  • Fernando de la Cruz
چکیده

Conjugative coupling proteins (CPs) are proposed to play a role in connecting the relaxosome to a type IV secretion system (T4SS) during bacterial conjugation. Here we present biochemical and genetic evidence indicating that the prototype CP, TrwB, interacts with both relaxosome and type IV secretion components of plasmid R388. The cytoplasmic domain of TrwB immobilized in an affinity resin retained TrwC and TrwA proteins, the components of R388 relaxosome. By using the bacterial two-hybrid system, a strong interaction was detected between TrwB and TrwE, a core component of the conjugative T4SS. This interaction was lost when the transmembrane domains of either TrwB or TrwE were deleted, thus suggesting that it takes place within the membrane or periplasmic portions of both proteins. We have also analyzed the interactions with components of the related IncN plasmid pKM101. Its CP, TraJ, did not interact with TrwA, suggesting a highly specific interaction with the relaxosome. On the other side, CPs from three different conjugation systems were shown to interact with both their cognate TrwE-like component and the heterologous ones, suggesting that this interaction is less specific. Mating experiments among the three systems confirmed that relaxosome components need their cognate CP for transfer, whereas T4SSs are interchangeable. As a general rule, there is a correlation between the strength of the interaction seen by two-hybrid analysis and the efficiency of transfer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA substrate-induced activation of the Agrobacterium VirB/VirD4 type IV secretion system.

The bitopic membrane protein VirB10 of the Agrobacterium VirB/VirD4 type IV secretion system (T4SS) undergoes a structural transition in response to sensing of ATP binding or hydrolysis by the channel ATPases VirD4 and VirB11. This transition, detectable as a change in protease susceptibility, is required for DNA substrate passage through the translocation channel. Here, we present evidence tha...

متن کامل

Specificity Residues Determine Binding Affinity for Two-Component Signal Transduction Systems

UNLABELLED Two-component systems (TCS) comprise histidine kinases and their cognate response regulators and allow bacteria to sense and respond to a wide variety of signals. Histidine kinases (HKs) phosphorylate and dephosphorylate their cognate response regulators (RRs) in response to stimuli. In general, these reactions appear to be highly specific and require an appropriate association betwe...

متن کامل

Experimental and computational analyses of the energetic basis for dual recognition of immunity proteins by colicin endonucleases.

Colicin endonucleases (DNases) are bound and inactivated by immunity (Im) proteins. Im proteins are broadly cross-reactive yet specific inhibitors binding cognate and non-cognate DNases with K(d) values that vary between 10(-4) and 10(-14) M, characteristics that are explained by a 'dual-recognition' mechanism. In this work, we addressed for the first time the energetics of Im protein recogniti...

متن کامل

Swapping single-stranded DNA sequence specificities of relaxases from conjugative plasmids F and R100.

Conjugative plasmid transfer is an important mechanism for diversifying prokaryotic genomes and disseminating antibiotic resistance. Relaxases are conjugative plasmid-encoded proteins essential for plasmid transfer. Relaxases bind and cleave one plasmid strand site- and sequence-specifically before transfer of the cleaved strand. TraI36, a domain of F plasmid TraI that contains relaxase activit...

متن کامل

Structural basis of cooperative DNA recognition by the plasmid conjugation factor, TraM

The conjugative transfer of F-like plasmids such as F, R1, R100 and pED208, between bacterial cells requires TraM, a plasmid-encoded DNA-binding protein. TraM tetramers bridge the origin of transfer (oriT) to a key component of the conjugative pore, the coupling protein TraD. Here we show that TraM recognizes a high-affinity DNA-binding site, sbmA, as a cooperative dimer of tetramers. The cryst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 18  شماره 

صفحات  -

تاریخ انتشار 2003